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1. Introduction

Physics of D-branes has long been a subject of intense study. Of particular interest

are D-branes on compact WZW manifolds. They provide interesting examples of D-brane

behaviour in non-trivial backgrounds with fluxes. But even for these, highly symmetric,

cases the full BCFT analysis is rather complicated [2] and stands in shocking contrast with

the very simple matrix model of D-brane condensation advocated in [3]. There is a price to

pay for the simplicity of the latter — it cannot describe all D-branes on the group manifold.

Some years ago, a matrix model based on quantum-group symmetries was advanced [1]. It

seems to work properly for all D-branes but many of its features are still mysterious. The

model uses the celebrated Reflection Equation (RE) [4] and its representation theory to

derive D-brane properties. On the one hand, the RE encodes a quantum-group version of

the familiar pattern of bulk symmetry breakdown of the underlying WZW model resulting

from the introduction of a maximally symmetric boundary — this is the particular aspect

of it emphasised in [5] (the quantum group of interest is the Drinfel’d–Jimbo deformation

of the universal enveloping algebra, suggested by certain fundamental structures of the

associated CFT). On the other hand, it defines a quantisation of the distinguished Poisson

structure on the target Lie group of the WZW model, first elucidated by Semenov-Tian-

Shansky in [6], compatible with the foliation of the group manifold by conjugacy classes

(to be wrapped by the maximally symmetric D-branes) and forming part of the canonical

structure of the boundary WZW model itself.1

In this paper, we shall follow this track and analyse fusing properties of the matrices

entering the RE, which — as it turns out — shed some light on the physical content of

the algebra. It appears that there are two types of fusion. We shall show how both of

1We refer the reader to [7] for a lucid exposition and comprehensive bibliography.
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them lead to some known D-brane properties. As we shall see, the first type of fusion

(which we dub the Bound-State Fusion — the BSF) can be interpreted as describing a

process of formation of extended D-branes out of D0-branes. It also chooses a particular

set of representations of the RE as the physically relevant ones. The second type (to be

called the Bulk-Weight Fusion — the BWF) is just the standard representation-theoretic

fusion of the function algebra on a given D-brane. Mastering this last kind of fusion is

necessary to keep control of functions on a given D-brane and yields couplings of gravity

to the D-brane. Our study thus takes us one step beyond the purely geometric framework

developed heretofore and enables us to make contact with the rich stringy physics of the

parent WZW models.

2. A lightning review of the algebraic setup

We begin by recapitulating the essential aspects of the quantum matrix models studied

in [1, 8, 9]. The reader is urged to consult the original papers for details.

The central element of the quantum-group-covariant approach to the study of non-

classical D-brane geometry in compact (simple-)Lie-group targets is the Reflection Equa-

tion (RE) [4]:

R
Λ1,Λ2
21 MΛ1

1 R
Λ1,Λ2
12 MΛ2

2 = MΛ2
2 R

Λ1,Λ2
21 MΛ1

1 R
Λ1,Λ2
12 , (2.1)

written for operator-valued matrices2 MΛ1,2 ∈ End(VΛ1,2) ⊗ REAq(g), with REAq(g) the

(abstract) Reflection Equation Algebra (REA) and VΛ1,2 two irreducible modules of Uq(g),

labeled by the respective highest weights Λ1,Λ2. Here, the deformation parameter is q =

e
πi

κ+g∨(g) , a value suggested by a detailed analysis of the (B)CFT of the WZW models

of interest, and R
Λ1,Λ2
12 = (πΛ1 ⊗ πΛ2)(R12) is the suitably represented3 R-matrix of the

Drinfel’d–Jimbo quantum group Uq(g). The RE (2.1) is readily verified to induce a Uq(g
L×

g
R)R-module structure on REAq(g) under which MΛ transform as elements of the tensor

module V
(L)
Λ ⊗ V

(R)
Λ+ (here, Uq(g

L × g
R)R is just Uq(g

L) ⊗ Uq(g
R) as an algebra, with a

suitably twisted coalgebra structure [1]) - indeed, the bichiral transformations:

(uL ⊗ uR) . MΛ
ij = πΛ(SuL)ikM

Λ
klπΛ(uR)lj , (2.2)

with S the antipode of Uq(g), preserve (2.1) (i.e. transform solutions into solutions). The

left-right symmetry of the RE is to be regarded as a quantum counterpart of the left-

right g
L ⊗ g

R-symmetry of the target group manifold, the horizontal component of the

(Kac–Moody) ĝ
L
κ ⊗ ĝ

R
κ -symmetry of the WZW model in the bulk.

2Displaying the indices explicitly, the RE reads (here, Mij ≡ MΛ
ij)

(RE)ij,kl : Rkc,ia M
Λ1

ab Rbj,cd M
Λ2

dl = M
Λ2

kc Rcd,ia M
Λ1

ab Rbj,dl.

The indices {i, j, a, b} and {k, l, c, d} correspond to the first (1) and the second (2) vector space in (2.1),

respectively.
3πΛ is the irreducible representation of Uq(g) of the highest weight Λ, a dominant integral affine weight

of g. We denote the set of all such weights (the fundamental affine alcove) by P κ
+(g). In particular πΛF

stands for the fundamental (defining) representation.
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Given the REA defined by the above commutation relations, together with the addi-

tional quantum-determinant constraint (M ≡ MΛF ):

detqM
!∝ 1, (2.3)

to be interpreted as fixing the “size” of the quantum group manifold, we may subsequently

consider its irreducible representations separated4 by the Casimir operators:

c
Λ
k = (trq ⊗ id)(MΛ)k. (2.4)

Upon descending to any specific such representation, we break the original left-right sym-

metry down to the diagonal part:

Uq(g
L × g

R)R 3 uL ⊗ uR ↘ u ⊗ u ∈ (Uq(g
L × g

R)R)V ∼= Uq(g) (2.5)

which fits in well with the picture of reduction of the bulk symmetry at an untwisted

maximally symmetric boundary5. This elementary observation already hints at the vi-

able identification of irreducible representations of the REA with (untwisted) maximally

symmetric boundary conditions of the relevant WZW model, that is with (untwisted) max-

imally symmetric D-branes.

In order to give some flesh to the last statement, we need an explicit realisation of the

defining relations (2.1) and (2.3). Luckily, one particular such realisation has long been

known [5, 11] (MΛ
0 is an arbitrary c-number solution to the RE):

MΛ = L+MΛ
0 SL− ≡ (πΛ ⊗ id)(R21)M

Λ
0 (πΛ ⊗ id)(R12) (2.6)

and is determined by the Faddeev–Reshetikhin–Takhtajan (FRT) realisation [12]:

L+
ij = [(πΛ)ij ⊗ id](R21) , L−

ji = [(πΛ)ij ⊗ id](R−1
12 ), 1 ≤ i ≤ j ≤ dimVΛ (2.7)

of the Drinfel’d–Jimbo quantum group Uq(g) in terms of the so-called L±-operators sat-

isfying the standard R-matrix commutation relations. Choosing this realisation for the

REA renders at our disposal the well-developed representation theory of Uq(g) whose pe-

culiarities at the CFT-dictated root-of-unity value of the deformation parameter q have

provided ample evidence for an intimate relationship between the REA thus reconstructed

and quantum D-branes, as summarised below:

- irreducible representations πΛ of Uq(g) of a non-vanishing quantum dimension (Λ ∈
P κ

+(g)) are in one-to-one correspondence with the inequivalent untwisted maximally

symmetric boundary states |Λ〉〉C of the WZW model (a twisted variant of the cor-

respondence has been worked out in [10]), the truncated tensor product of these

representations reproduces the fusion rules of the latter - cf [1];

- the representation theory of the REA induced from that of the quantum group ac-

counts well for the discrete symmetries of the group manifold generated by the simple

currents of the CFT - cf [9];

4Cf [9] for a discussion of (geometrically well-understood) degeneracies.
5For an extension to the twisted case, see: [10].
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- harmonic analysis on the quantum geometries associated with the irreducible repre-

sentations of the REA agrees with the decoupling limit [3, 13] of the subalgebra of the

boundary OPE algebra composed of horizontal multiplets descended from primary

boundary fields that do not change the boundary condition - cf [1];

- localisation of D-branes within the quantum group manifold from fixing Casimir

eigenvalues is in keeping with the semiclassical results - cf [1, 10];

- exact values of D-brane tensions follow from a general matrix-action Ansatz - cf [1];

- a well-defined semiclassical limit coincides with the perturbative fuzzy structure of [3]

- cf [1];

- fractionation of D-branes at fixed-points of simple-current orbifold action admits a

straightforward algebraic description - cf [9].

In this paper, we attempt to give an independent justification of the choice of realisation

of the REA that underlies the hitherto successful quantum reconstruction programme,

whereby we also discover an algebraic description of the D-brane condensation phenomena

responsible for creation of arbitrary D-branes of the model (of the kind described) from

gauge-field-perturbed stacks of elementary D0-branes. Last, we rederive harmonic analysis

on any given D-brane from the analysis of an algebraic fusion procedure and - most im-

portantly - extract from the FRT-realised REA the microscopic D-brane geometry data,

as encoded in the graviton coupling to its worldvolume.

3. Bound-state fusion

In this section, we establish a non-trivial link between effective D-brane gauge dynam-

ics in boundary WZW models and the REA’s defined by (2.1). We want to introduce

an algebraic cousin of the D-brane condensation effect [14], discussed at great length in

[3, 15] with reference to the seminal papers by Affleck and Ludwig [16]. In the case at

hand, the very form of fusion leads us to conclude that an arbitrary D-brane, as described

by its function algebra, can be built out of a number of trivial representations of the RE,

describing D0-branes. The algebraic fusion algorithm has been devised in direct reference

to the techniques of the principal chiral model presented in [17], in which there is addi-

tional structure (dependence on a dynamical parameter) justifying its interpretation. In

the present setup, lacking this extra structure, some elementary tests of its validity are

performed explicitly below, as well as in the Appendix. In particular, we verify - rather

importantly - that it has the expected semiclassical limit.

We begin by remarking that the operator-valued matrix6 MΛ(ΛB) given by either side

of (2.1),

M
Λ(ΛB)
1 = M

ΛB

2 R
Λ,ΛB

21 MΛ
1 R

Λ,ΛB

12 , (3.1)

6Here, we add an extra index (ΛB) which indicates that MΛ(ΛB ) ∈ End(VΛ) ⊗ End(VΛB
) ⊗ REAq(g).

Earlier analyses focused mainly on the special case (Λ, ΛB) = (ΛF , 0) in which MΛF (0) ≡ MΛF represents

the coordinate module of the quantised group manifold. The meaning of MΛ for a general Λ shall be

expounded in the next section.
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also satisfies an appropriate RE:

R
Λ1,Λ2
21 M

Λ1(ΛB)
1 R

Λ1,Λ2
12 M

Λ2(ΛB)
2 = M

Λ2(ΛB)
2 R

Λ1,Λ2
21 M

Λ1(ΛB)
1 R

Λ1,Λ2
12 (3.2)

for ΛB arbitrary. The latter follows straightforwardly from the RE’s and the Quantum

Yang–Baxter Equation satisfied by the M -matrices fused and the R-matrix, respectively.

In other words, the Bound-State Fusion (BSF) thus defined, (3.1), provides a systematic

method of generating new solutions to the RE from the known ones.

The physical significance of (3.1) relies on the observation that it singles out a set

of REA representations of special relevance to the study of WZW D-branes. Take any

c-number matrix (M0)
Λ respecting the RE (considered, e.g., in [5]) so that (M0)

ΛB

2 (M0)
Λ
1

also satisfies the RE. According to the logic outlined in Sec.2, the latter is - for (M0)
ΛB = I

(the unit matrix of dimension dimVΛB
) - to be associated with dimVΛB

D0-branes located

at positions defined by (M0)
Λ as per Casimir eigenvalues (2.4). Then, the right-hand side

of (3.1) belongs to (πΛ ⊗ πΛB
)(Uq(g) ⊗ Uq(g)). We interpret the process of passing from

the reducible representation just described, (M0)
ΛB

2 (M0)
Λ
1 , to the irreducible one given by

(3.1) as condensation and depict it as

(M0)
ΛB

2 (M0)
Λ
1 −→ MΛ(ΛB) ≡ R

Λ,ΛB

21 (M0)
Λ
1 R

Λ,ΛB

12 . (3.3)

This, however, is none other but the FRT realisation (2.6) of the irreducible represen-

tation of REAq(g) ↪→ Uq(g) of highest weight ΛB , chosen in [1] for the simple reason:

it induces a representation theory of REAq(g) whose elements, irreducible highest-weight

representations of Uq(g) of a non-vanishing quantum dimension, are in a straightforward

one-to-one correspondence with all the candidate algebraic D-branes associated, in [13, 18],

with untwisted maximally symmetric WZW boundary conditions on the compact (simple

and simply connected) Lie group G. Thus, we can postulate the following

Principle. Untwisted maximally symmetric quantum WZW D-branes on a simple and

simply connected compact Lie group G are classified by those irreducible representations of

REAq(g) which can be generated through the Bound-State Fusion (3.1) from an elementary

c-number D0-brane solution.

The BCFT-preferred FRT realisation is now an immediate consequence of the Principle

whose physical rationale shall be presented below.

We may next apply the fusion algorithm to the physical solutions generated from the

D0-brane one. Thus, given MΛB(λ) and MΛ(λ) the fusion (3.1) leads to:

MΛ(ΛB×λ) = M
ΛB(λ)
2 R

Λ,ΛB

21 M
Λ(λ)
1 R

Λ,ΛB

12 . (3.4)

Here, the left-hand side belongs to [πΛ ⊗ (πΛB
⊗πλ)](Uq(g)⊗Uq(g)⊗Uq(g)) and hence - as

a tensor operator7 - it can be decomposed as

MΛ(ΛB×λ) = ⊕µ∈P κ
+(g)N µ

ΛB λMΛ(µ), (3.5)

7Cp [1] and the Appendix.
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where N µ
ΛB λ are the standard fusion rules of the WZW model with the current symmetry

ĝκ and the usual restriction to irreducible representations of Uq(g) of a non-vanishing

quantum dimension has been imposed.

The last result as well as the reasoning that has led us to formulate the Principle are

strongly reminiscent of the BCFT picture in which gauge-field perturbations induce transi-

tions through condensation between an original stack of D-branes and a final (metastable)

state. Let us dwell on this a little longer.

The fusion operation:

MΛ(λ) ΛB−BSF−−−−−−→ MΛ(ΛB×λ) (3.6)

defined above mimics the BCFT transition [15]:

(λ; dimΛB)
AΛB−−−→ ⊕µ∈P κ

+(g)N µ
ΛB λ(µ; 1), (3.7)

of a stacked dimVΛB
-tuple of D-branes of weight label λ, effected by the marginal perturba-

tion:
∫
∂Σ dtAΛB

a Ja(t) (∂Σ is the boundary of the open-string worldsheet) of the boundary

WZW model coupling the constant gauge field AΛB
a = πΛB

(Ta) ⊗ Idλ

8 to the boundary

symmetry current J . In the relevant fuzzy matrix model [3], the transition is realised by

perturbing the background geometry Y
λ,dΛB
a = IdΛB

⊗ πλ(Ta) of a stack of (dΛB
) fuzzy

D-branes of weight label λ with the specific gauge fluctuation AΛB
a as

Y
λ,dΛB
a

AΛB−−−→ Y
λ,dΛB
a + AΛB

a = ⊕µ∈P+(g)L
µ

ΛB λ Y µ,1
a , (3.8)

whereby a semiclassical (large-κ) variant of the condensation effect is induced (L µ
ΛB λ are

the Littlewood–Richardson coefficients which replace the fusion rules at large values of the

level). Motivated thus, we put forward the following

Claim. The Bound-State Fusion (3.4) captures — in the algebraic framework of the

REA — the gauge-field-driven effect of condensation with boundary-spin absorption (3.7).

In order to substantiate it, we need to go back to [8] and identify nontrivial gauge-field

degrees of freedom on a stack of quantum D-branes. Hence, we associate small (we have a

natural expansion parameter ~ ≡ π
κ+g∨(g)) gauge-field excitations - in the vein of a much

more general approach to gauge fields on a noncommutative geometry - with perturbations

of the geometric background, MΛ(λ), Λ = ΛF (the coordinate module), exactly as in

the semiclassical picture (3.8). Furthermore, we decompose some of the terms in (3.4),

X ∈ {MΛB(λ)
2 , R

ΛF ,ΛB

21 , R
ΛF ,ΛB

12 }, as X = I ⊗ I + x, where x is of the order of O(~) and

(q-)traceless (up to corrections of higher order in ~). With this decomposition, in which we

assume9 that 0 . ‖λ‖, ‖ΛB‖ ¿ κ, the leading term in (3.4) reads σ1,2(IdΛB
⊗MΛF (λ)) (σ1,2

interchanges the first and second tensor components) and shall be denoted by M
ΛF (ΛB×λ)
0 .

Thus, the right-hand side of (3.4) can be rewriten as

MΛF (ΛB×λ) = M
ΛF (ΛB×λ)
0 + AΛF (ΛB×λ), (3.9)

8πΛB
(Ta) are the generators of the horizontal Lie algebra g, satisfying the defining relation [Ta, Tb] =

2ıfabcTc, and realised in the representation πΛB
; moreover, we have denoted dλ := dimVλ.

9This is precisely the domain of validity of the semiclassical approximation.
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where AΛF (ΛB×λ) ∼ O(~) acquires the interpretation of a gauge field10. Precise agreement

between our description11 and the BCFT one (3.8) follows from the fact that the RE

(3.2), satisfied by MΛF (ΛB×λ), reproduces — in the semiclassical régime, at O(~) - exactly

the matrix equations of the fuzzy model of the BCFT [1] satisfied by the right-hand side

of (3.8), that is the vanishing-curvature equation for the gauge potential AΛB (in this

picture, the semiclassical transformation rules for AΛB become a consequence of those of

the covariant coordinate MΛF (ΛB×λ)). Alternatively, one may perform an ~-expansion of

the explicit FRT realisation of MΛF (ΛB×λ), whereby one readily reobtains (3.8) at the first

nontrivial level.

4. Bulk-weight fusion and brane-gravity couplings

Let us begin by recalling that the quantised algebra of functions on untwisted D-

branes, REAq(g), is generated by the elements M
ΛF

ij . There is a natural basis of the

algebra, regarded here as a vector space, namely the basis of Uq(g)-intertwiners related

directly - in the physical context - to the multiplets of boundary fields on a given D-brane

descended from the primary fields of the BCFT by the action of the horizontal subalgebra

g of the current symmetry algebra ĝκ of the relevant WZW model (in the decoupling limit

of [3, 13]). We claim that

REAq(g) = ⊕Λ∈P κ
+(g)span〈MΛ

ij 〉i,j∈1,dΛ
, (4.1)

where MΛ
ij is the (i, j)-th operator entry of the matrix MΛ, is the basis sought. Above,

MΛ denote matrices respecting the RE (2.1) written in the representation πΛ ⊗ πΛ. Thus,

MΛ(λ) (see the previous section) are - indeed - quantum-group tensors with transformation

properties appropriate for functions on the standard set of D-branes,

(1 ⊗ πλ(u1))M
Λ(λ)(1 ⊗ πλ(Su2)) = (πΛ(Su1) ⊗ 1)MΛ(λ)(πΛ(u2) ⊗ 1). (4.2)

The road to (4.1) goes through the definition of the Bulk-Weight Fusion (BWF):

MΛ1×Λ2
12 =

(
R

Λ1,Λ2
12

)−1
MΛ1

1 R
Λ1,Λ2
12 MΛ2

2 . (4.3)

The fusion is a solution-generating operation for the “bulk” (matrix) tensor component of

MΛ(λ), compatible with the defining relation (2.1) of a Uq(g
L × g

R)R-module [11]. It is a

natural counterpart of the classical tensoring procedure12 in the category of solutions to

the RE - one can easily show that (4.3) yields a (πΛ1 ⊗πΛ2)(Uq(g
L×g

R)R⊗Uq(g
L×g

R)R)-

module and respects the corresponding RE13; the right-hand side of (4.3) can be projected

10Using the BWF of Sec.4, the gauge field is readily shown to be a “function” of the background geometry

MΛF (λ).
11It is worth remarking that the other natural (given the FRT realisation) candidate for an algebraic

description of the condensation phenomena, namely the standard coproduct in the second tensor component

of M = R21R12 in (2.6), yields essentially the same result.
12It is, in particular, equivalent to the standard coproduct in the first tensor component of the universal

M -matrix M = R21R12 in the FRT realisation.
13The RE in question is (2.1) with both πΛ1

and πΛ2
replaced by πΛ1

⊗ πΛ2
.
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onto irreducible components, MΛ, with πΛ ⊂ πΛ1 ⊗ πΛ2. Thus, starting from MΛF (πΛF

is the defining representation of Uq(g)) we can generate a basis of matrices MΛ for any

Λ ∈ P κ
+(g). This leads directly to (4.1).

The above iterative algorithm for obtaining tensor-product solutions from some given

elementary ones, MΛ1 and MΛ2 , is our second example of RE fusion and was discussed

at great length, in the above form, in [11]. As we already know, it is not the only way

of composing elements of REAq(g). We shall therefore distinguish it by giving it a name

suggested (once more) by the literature on the (1 + 1)-dimensional models, that is the

Bulk-Weight Fusion.

Below, we give an interpretation to πλ(MΛ
ij). Recall that πλ(MΛ

ij) ∈ End(Vλ) for the

D-brane labeled by the weight λ. Accordingly, we may calculate the (q-)trace of MΛ over

the module Vλ. It is straightforward to demonstrate [1] that the trace is proportional to

the unit matrix, that is

tr(λ)
q (MΛ

ij) = trVλ
(MΛ

ij · q2Hρ) = f(Λ, λ) δij , (4.4)

where ρ is the Weyl vector of g. As shown in [1], πλ(MΛ
ij) in the FRT realisation (3.3) encode

a number of properties of the weight-λ D-brane in an algebraic manner (cp Sec.1). Since

we have not normalised M so far, we can specify the function f(Λ, λ) up to a λ-dependent

factor only. Let us calculate f(Λ, λ). We use [19]

R12 = qHiFij⊗Hj

(
I ⊗ I +

∑

U±

U+ ⊗ U−

)
, (4.5)

while for R21 we transpose U+ ↔ U− in the expression above. Here, F is the (symmetric)

quadratic matrix of g, and U+, U− stand for terms in the Borel subalgebras of rising and

lowering operators, respectively. As the left-hand side of (4.4) does not depend on the

vector from the module VΛ that it acts upon, we can evaluate it on the highest-weight

vector (annihilated by U+), |Λ〉. Then, only the generators of the Cartan subalgebra in

(4.5) contribute,

q2HiFij⊗Hj ||Λ〉⊗· = q2ΛiFij⊗Hj = I ⊗ q2HΛ , (4.6)

so that (4.4) becomes14

tr(λ)
q (MΛ

ij) = δij trVλ
(q2(HΛ+Hρ)) = δij χλ

(
2πi(Λ + ρ)

κ + g∨(g)

)
= δij

SΛ+λ

SΛ+0
, (4.7)

where χλ and SΛ+λ are the standard character over the g-module of highest weight λ and

the modular matrix of the WZW model associated to ĝκ, respectively, whereas Λ+ is the

unique charge conjugate of the weight Λ. In particular, for g = su2, we obtain

fsu2(Λ, λ) = trVλ
(q(Λ+1)H) =

sin π(Λ+1)(λ+1)
k+2

sin π(Λ+1)
k+2

, (4.8)

which agrees with Ssu2
Λλ =

√
2

k+2 sin π(Λ+1)(λ+1)
k+2 and Λ+ ≡ Λ for all Λ.

14The explicit formula relating entries of the modular S-matrix to Lie-algebra characters can be found,

e.g., in [20].

– 8 –



J
H
E
P
0
4
(
2
0
0
6
)
0
0
9

In order to understand the physics behind the last result, recall that - on the BCFT

side - untwisted maximally symmetric D-branes of the WZW model are represented by

Cardy states [21]:

|λ〉〉C =
∑

Λ∈P κ
+(g)

SΛλ√
SΛ0

|Λ〉〉I . (4.9)

Above, |Λ〉〉I are the Ishibashi (character) states [22]. The data encoded in (4.9) turn out

to be sufficient to determine, to the leading order in ~, the coupling of graviton modes:

|a, b, γij〉 = J
(a
−1J̃

b)
−1|γi〉 ⊗ |γ+

j 〉, |γi〉 ⊗ |γ+
j 〉 ∈ V̂γ ⊗ V̂γ+ (4.10)

to the D-brane defined by (4.9) (here, J−1 and J̃−1 are the (−1)-th Laurent modes of the

two chiral components of the bulk ĝ
L
κ ⊗ ĝ

R
κ -symmetry current, acting on the ĝκ modules

V̂γ,γ+ of highest weights γ, γ+ ∈ P κ
+(g), respectively). Indeed, one readily verifies that (N

is an irrelevant normalisation constant)

〈a, b, γij |λ〉〉C = N δabδij
Sγλ√
Sγ0

. (4.11)

In the present context, we are dealing with a matrix model whose elementary degrees of

freedom are D0-branes (the D0-brane enters the quantum-algebraic construction as the

trivial representation of REAq(g), on which MΛ(0) = IdΛ
), hence it seems only natural to

consider couplings normalised relative the reference D0-brane,

〈a, a, γij |λ〉〉C
〈b, b, γkk|0〉〉C

= δij
Sγλ

Sγ0
. (4.12)

From direct comparison between (4.7) and (4.12), we then draw the following

Conclusion. The Uq(g)-tensor operators MΛ(λ), Λ ∈ P κ
+(g), obtained from elementary

solutions to the Reflection Equation through the Boundary-Weight Fusion (4.3) and com-

posing a physically distinguished basis of the algebra of functions on the untwisted maximally

symmetric WZW D-brane labeled by the weight λ ∈ P κ
+(g), encode the complete informa-

tion on bulk graviton |a, b,Λ+
ij〉 couplings to the Cardy boundary state |λ〉〉C representing

the D-brane, relative an elementary D0-brane, as expressed by the identity:

〈a, a,Λ+
ij |λ〉〉C

〈b, b,Λ+
kk|0〉〉C

= tr(λ)
q (MΛ

ij). (4.13)

We emphasise that it is not just the numerical values of the couplings but also their

structure, diagonal in the bulk representation indices, that can be read off from (4.7). The

D0-brane data (e.g. the D0-brane tension), on the other hand, have to be supplemented

independently of the algebra.15

15Actually, on the level of bulk-boundary couplings, the only piece of data that cannot be retrieved from

the algebra is S00. Indeed, we have [20]

SΛ+λ = S0Λ ·χλ

„

2πi(Λ + ρ)

κ + g∨(g)

«

= S00 ·χΛ

„

2πiρ

κ + g∨(g)

«

·χλ

„

2πi(Λ + ρ)

κ + g∨(g)

«

= S00 ·tr
(Λ)
q

“

tr(λ)
q M

Λ
”

, (4.14)

where we have first used the symmetries of the modular S-matrix: Sλ+µ = Sλµ+ and Sλµ = Sµλ, and later

reiterated the first equality.
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5. Conclusions

In the present paper, we have discussed several application of the algebraic RE fusion to

the description of physics of untwisted maximally symmetric WZW D-branes. The Bound-

State Fusion has been shown to lead to the appropriate choice of realisations of the REA

and to give a nice picture of higher-dimensional quantum D-branes as condensates of the el-

ementary quantum D0-branes, reproducing - in the semiclassical approximation - precisely

the fuzzy condensation scenario derived from stringy perturbation theory in [3]. It also

seems to offer some insight into the structure of gauge fluctuations of the non-commutative

geometry defined by the quantised function algebra REAq(g): being a multiplicative per-

turbation of this background geometry, the gauge fluctuations are strongly reminiscent of

the nonperturbative Wilson-loop operators of Bachas and Gaberdiel [23], which - in turn -

fits in well with earlier findings on the rôle of (open) Wilson lines in gauge field theories on

noncommutative geometries [24]. The Bulk-Weight Fusion, on the other hand, has been

demonstrated to encode a fairly complete information on the gravitational D-brane cou-

plings. Both are amazingly simple and follow straightforwardly from the structure of the

RE.

In spite of the progress, signified by our results, in formulating a compact description

of quantum WZW geometry and elucidating the quantum-group structure of the associated

BCFT, a lot more still needs to be understood in this context. We hope to return to these

riddles soon.
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A. Quantum-group covariance

Below, we consider Uq(g)-covariance properties of the various generalised reflection

matrices introduced in the main text. In particular, we give a simple proof of (4.2) and

(4.4), essentially repeating the original one from [1]. First, we show, for M12 := R21R12,

∆(u)M12 = ∆(u)R21R12 = R21∆
cop(u)R12 = R21R12∆(u) = M12∆(u), (A.1)

where we have invoked the twisting property of R [25, 26]:

∆cop(u) = R∆(u)R−1, ∆cop(u) := u2 ⊗ u1. (A.2)
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Using Hopf-algebra identities for the coproduct and the antipode of Uq(g) (i.e. taking (A.1)

with both sides of the identity extended by Su0 ⊗ I from the left and by I ⊗ Su3 from the

right, and - upon contracting and then multiplying the tensor factors in the pairs of spaces

(0, 1) and (2, 3) - representing both sides on VΛ ⊗ Vλ), we turn (A.1) into (4.2), or

πλ(u1)M
Λ(λ)πλ(Su2) = πΛ(Su1)M

Λ(λ)πΛ(u2), (A.3)

for any u ∈ Uq(g).

In order to prove (4.4), we recall the definition of the quantum trace: trq(x) := tr(xv),

where v := (S ⊗ id)(R21) is the distinguished invertible (v−1 ≡ Sv) element of Uq(g)

satisfying S2u = vuv−1 for any u ∈ Uq(g) [25]. This, together with (4.2), immediately

implies

πΛ(Su1)tr
(λ)
q (MΛ)πΛ(u2) = tr(λ)

q (u1M
ΛSu2) = tr(λ)

q (MΛSu2vu1) = ε(u)tr(λ)
q (MΛ), (A.4)

or, equivalently,

[πΛ(u), tr(λ)
q (MΛ)] = 0. (A.5)

Last, we may verify the tensorial character of (3.1), on which our physical interpretation

of the BSF has been based. Our proof is in fact a slight variation of the trick used above.

We begin by defining the operator M123 = R32R23R21R31R13R12 such that M
Λ,ΛB×λ
1 2⊗3 ≡

(πΛ ⊗ πΛB
⊗ πλ)(M123). Using (A.2) again, we then obtain

[(∆ ⊗ id) ⊗ ∆](u)M123 = M123[(∆ ⊗ id) ⊗ ∆](u) (A.6)

and hence

(Su1 ⊗ I ⊗ I)M123(u2 ⊗ I ⊗ I) = (I ⊗ u1 ⊗ u2)M123(I ⊗ Su4 ⊗ Su3). (A.7)

The latter formula ultimately turns into an appropriate analogon of (A.3),

πΛ(Su1)M
Λ,ΛB×λπΛ(u2) = πΛB⊗λ(u1)M

Λ,ΛB×λπΛB⊗λ(Su2), (A.8)

once we invoke one of the fundamental properties of a Hopf algebra [25], ∆ ◦S = (S ⊗S) ◦
∆cop, and use the standard definition of a tensor-product representation of a coalgebra,

πΛ1⊗Λ2 := (πΛ1 ⊗ πΛ2) ◦ ∆.
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